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Abstract
The modifications of the crystal field parameters Alm at the (0001) surface
of the rare-earth metals Tb, Dy, Ho, Er and Tm due to the surface-induced
modifications of the charge density are investigated by the ab initio density
functional electron theory. For the three outermost atomic layers the values
of the parameters A20, A40, A60 and A66 which are nonzero for the hexagonal
bulk are drastically different from the bulk values. The additional parameters
A43 and A63 originating from the symmetry reduction at the surface are very
large close to the surface. Altogether, the results show that for a thermodynamic
calculation of the spin structure at the surface a simple broken-bond model does
not suffice.

1. Introduction

Elementary rare-earth metals exhibit a variety of different spin structures in the bulk [1],
e.g. ferromagnetic, conical, helical, various types of antiphase domain structures, etc.
This variety of spin structures is a consequence of competing magnetic interactions [2],
i.e. oscillatory exchange interactions of RKKY type, magnetocrystalline anisotropy and
magnetoelastic interactions as well as dipole interactions. At a surface or at interfaces the
delicate balance between these competing interactions is strongly modified, and it is expected
that this has a big effect on the local spin structure.

In a pioneering paper Bohr et al [3] investigated for the first time the modifications of the
bulk spin structure for Ho by the appearance of the two surfaces of a thin Ho slab. The ground
state spin structure of hexagonal bulk Ho is a conical ordering [4] of the moments with a small
ferromagnetic component along the hexagonal c axis corresponding to a cone opening angle
� of 80◦. The components in the basal plane are ferromagnetically aligned in each plane but
are rotated relative to each other in successive basal planes. The orientations of the projections
in the basal planes are described by the angles � (figure 1). The resulting magnetic structure
is locked to the lattice periodicity and repeats itself after 12 hexagonal layers, respectively.
The average angle of rotation is 30◦ but the moments in two successive planes show a pairwise
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Figure 1. Definition of the cone opening angle� and the in-plane angle � describing the orientation
of a magnetic moment in a hexagonal system. Note that we define � with respect to the a axis in
the basal plane.

(This figure is in colour only in the electronic version)

reorientation towards the closest nearest-neighbour easy b axis in the plane, so that the so-
called bunching angle between one of the moments and the nearest-neighbour easy b axis is
only about 5.8◦ (figure 2). To determine the spin structure by theory, in general a three-step
procedure is used. First, a phenomenological Hamiltonian is defined which describes the above
discussed interactions in the rare-earth metal. Second, the interaction parameters appearing in
this Hamiltonian are determined with the ab initio electron theory (as in the present paper) or by
fitting the Hamiltonian to experimental results. Third, the phenomenologicalHamiltonian with
the so-specified interaction parameters is used in a statistical mechanics treatment (e.g. mean
field theory or thermodynamic perturbation theory or exact diagonalization procedures) to
determine the ground state properties and the finite-temperature properties of the spin system.
To investigate by this three-step procedure the influence of the surfaces of a Ho slab on the
spin structure, Bohr et al [3] adopted in their zero-temperature mean-field calculation the so-
called broken-bond model. This means that they considered just the effect of the absence of
neighbouring atoms at the surface but otherwise they used the magnetic interaction parameters
of the bulk also for the surface, i.e. they did not take into account the strong modification of the
electronic states at the surface [5, 6]. Within the broken-bond model they found a tendency to
near-ferromagnetic alignment of the moments in the basal planes at the three or four outermost
atomic layers of the slab (triplet or quartet termination). If the slab contains nine or fewer
layers then the ferromagnetic state is favoured for the whole slab. More recently Leiner et al
[7] have investigated the thickness dependence of the magnetic ordering temperature of a Ho
film by the mean-field broken-bond model.

The present paper represents a first step to abandoning the broken-bond model. It has
been shown by numerous calculations (see, e.g., [8–10]) within the framework of the ab initio
density functional electron theory that, in particular, the crystal field (CF) parameters which
essentially determine the magnetocrystalline anisotropy in rare-earth metals (except for Gd)
depend extremely sensitively on the electronic charge density. Therefore it is the objective of
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Figure 2. The ground state spin structure of bulk Ho. The figure shows the projection of the atomic
moments in 12 successive (0001) layers on the basal plane. a and b denote one of the six hard and
easy directions in the basal plane, respectively. �bunch is the bunching angle.

the present paper to calculate the modification of the CF parameters near the surface by the ab
initio electron theory. It will be shown that these modifications are very strong in the outermost
three or four layers, i.e. in the regime where the broken-bond model predicts the pronounced
change of the spin structure as compared to the spin structure of the bulk. This means that for
a realistic determination of the spin structure at the surface the broken-bond model does not
suffice.

2. Calculational method

The magnetocrystalline anisotropy energy of rare-earth (RE) metals is (except for Gd)
determined by the very strong spin–orbit coupling for the 4f electrons. For many representatives
of this class of materials the 4f electrons can be described by core states with a charge density
ρ4f (r) which is given by the one of a free trivalent RE3+ ion (‘standard model of RE metals’,
see [8, 11]). The charge density ρ4f(r) is strongly anisotropic and it interacts electrostatically
with the CF produced by all the other charges in the system. The ground state orientation
of the anisotropic 4f charge cloud is the one for which the energy is minimal. Rotating
the 4f moments out of the ground state orientation by applying a strong oblique external
magnetic field, these anisotropic charge clouds are more or less rigidly co-rotated because
of the very strong spin–orbit coupling in the 4f shell. As a result, the orientation in the CF
becomes less favourable, the energy increases, and this is the origin of the magnetic anisotropy
energy. Hence, the 4f contribution to the magnetocrystalline anisotropy energy is obtained by
calculating the expectation value of the interaction energy between the anisotropic 4f charge
density of the trivalent RE3+ core under consideration and the density ρrest(r) of all the other
charges in the system as a function of the orientation of the 4f charge density. The anisotropic
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4f charge density polarizes the charge density of the rest, and this polarization changes when
the 4f charge density is rotated out of the ground state orientation, i.e. the charge density of
the rest depends rather strongly on the 4f orientation [12]. However, it has been shown by
a second-order perturbation theory [12, 13] that the CF parameters describing the interaction
energy have to be calculated by neglecting this polarization effect, i.e. by calculating the charge
density of the rest for a spherically averaged 4f charge density. The contribution Vaniso of the
RE atom to the magnetocrystalline anisotropy energy may then be calculated from first-order
thermodynamic perturbation theory based on the assumption that the exchange energy is much
larger than the anisotropy energy (see [14] and references therein), yielding

Vaniso =
6∑

l=1

l∑

m=−l

Alm〈Clm 〉. (1)

Here 〈Clm 〉 denotes the expectation values of the 4f multipole moments which depend on the
orientation of the 4f shell and on the temperature. The quantities Alm are the CF parameters.
Equation (1) can be further simplified when taking into account the point symmetry of the
considered RE site. For the hexagonal site of the bulk we have D3h symmetry, and then the
only nonzero CF parameters are A20, A40, A60 and A66. Introducing a (0001) surface parallel
to the hexagonal planes reduces the symmetry of the RE sites to C3v, and then the nonzero CF
parameters are A20, A40, A60, A66 and in addition A43 and A63.

In a simplified model [15] the Alm may be determined (see above) by calculating via a
multipole expansion the electrostatic interaction energy of the anisotropic 4f charge density
with the aspherical charge density of all the other charges in the system (thereby neglecting
the polarization of this latter charge density by the 4f shell, see above), and by representing
the result in the form of equation (1). The Alm are then given by:

Alm = clm

∫
dr r2ρ4f (r)Vlm(r)∫

dr r2ρ4f (r)rn
. (2)

Here the clm are numerical factors, Vlm(r) = Vext,lm(r) + VH,lm[ρrest] are the coefficients of
the potential for the expansion into cubic harmonics Zlm , Vext is the potential of the nuclei
and VH[ρrest] is the Hartree potential of the charge density ρrest of all the charges except the 4f
charge density of the considered RE atom. In a more refined theory [12] based on the density
functional electron theory it can be shown that there is in addition a small contribution from
the exchange–correlation potential (see equation (8) of [12]) which we have taken into account
in our calculations.

From equation (2) it becomes obvious that extremely accurate calculations are required for
a reliable determination of the Alm: the 4f charge density is localized in the interior of the atomic
sphere around the considered RE atom, whereas the aspherical part of the potential (described
by Vlm(r) for l �= 0) is very small in the interior and increases gradually when approaching the
sphere boundary, i.e. the Alm are determined by a small overlap of ρ4f and Vlm which therefore
has to be calculated with extreme care. In the present paper we calculated the charge densities
using the density functional electron theory in local-spin-density approximation [16] (LSDA).
The 4f states cannot be described correctly by the LSDA (which yields a too far extended 4f
wavefunction) but we assume that for given 4f charge density ρ4f the interaction between the
4f states and the other states via the effective potential of the density functional theory is well
reproduced by the LSDA. To obtain a good approximation for the 4f charge density ρ4f we
design [8] within the standard model the 4f charge and spin density of the free RE3+ ion in
such a way that they resemble as closely as possible the corresponding densities as obtained
by a fully relativistic Dirac–Fock calculation [17], which describes the exchange–correlation
effects in the 4f shell much more accurately than the LSDA. To achieve this the 4f states are
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Table 1. The CF parameters 〈rl 〉4f Alm in [K] as obtained by the FLAPW method and the FLMTO
method [21].

RE Method 〈r2〉4f A20 〈r4〉4f A40 〈r6〉4f A60 〈r6〉4f A66

Tb FLAPW −164 19.0 2.48 21.8
FLMTO −194 17.4 2.38 21.1

Dy FLAPW −163 17.5 2.60 22.4
FLMTO −200 16.1 2.52 21.9

Ho FLAPW −153 14.9 2.39 20.5
FLMTO — — — —

Er FLAPW −138 13.3 2.31 19.8
FLMTO −170 11.9 2.24 19.4

Tm FLAPW −105 10.9 2.14 18.2
FLMTO −142 9.45 1.85 16.0

calculated by the LSDA in a localization sphere with the restriction that the 4f wavefunctions
drop to zero at the sphere boundary. The radius of the localization sphere is chosen in such
a way that the so-obtained expectation values 〈r l〉4f are as close as possible to the respective
expectation values of the Dirac–Fock calculation for the free trivalent RE3+ ion. For the RE
metals this is obtained for a localization radius which is identical to the muffin-tin radius
for touching muffin-tin spheres. Because the tails of the 4f states beyond the localization
sphere are cut in this procedure, we neglect any contribution to the CF parameters arising from
the overlap of the real 4f charge density and the aspherical part of the potential outside the
localization sphere. Because V6m increases most strongly when approaching the muffin-tin
sphere we expect that the calculated CF parameters for l = 6 exhibit the largest uncertainties.
In the present paper the valence states are obtained by the WIEN97 code [18], which is based
on the full-potential linearized-augmented-plane-wave (FLAPW) method [19]. Spurious 4f
valence contributions due to the deficiency of the LSDA to describe correctly 4f states are
thereby removed by choosing negative 4f augmentation energies, see [8]. The polarization of
the non-4f core states by the surroundings has been taken into account by a method described
in [20].

3. Ab initio results for the crystal-field parameters

As a test for our FLAPW calculations we first determined the CF parameters for bulk Tb, Dy,
Ho, Er and Tm and compared our results with those of corresponding former calculations [21]
within the framework of the full-potential linear-muffin-tin-orbital method (FLMTO). As
shown in table 1, the agreement between the results of the two calculations is satisfactory in
view of the fact that the CF parameters depend extremely sensitively on the charge densities.

The layer-dependent CF parameters of a slab were calculated by a supercell method.
Thereby a layer consisting of 16 basal planes in hcp stacking and a vacuum sheet on top
is repeated periodically. By test calculations we showed that a vacuum sheet of thickness
dvac = 2c is sufficient to neglect the interaction effects of the RE layers across the vacuum
sheet. For the lattice parameters c and a we inserted the experimental values. We performed
two types of calculation. In the first calculation the atoms in the slab are in the positions they
would have in a bulk material. In a second calculation we determined for Tb and Ho by the
FLAPW calculation the actual positions of the atoms in the slab by allowing for relaxations of
the interplane distances (figure 3).
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Figure 3. Modifications of the interlayer distances in a 16-layer slab of Tb (left) and Ho (right).
The quantity drelax

i is the distance between layer i and layer i + 1 (layer 1 denotes the outermost
layer), and dbulk is the interlayer distance in the bulk material.

The results for the layer-dependent CF parameters from the calculation without (with)
relaxation are given in table 2 (table 3). By comparing the results of the two tables we can
investigate the influence of structural relaxations on the CF parameters. There are strong
modifications of the respective bulk values for the first three to four layers which are especially
strong for A20 which is a factor of more than two larger at the surface than in the bulk.
Furthermore, it is remarkable that in all considered materials the CF parameter A40 is negative
at the surface, whereas it is positive in the bulk. This changes when allowing for interlayer
relaxations (table 3, figures 4 and 5). Then the surface value of A40 is again positive as in the
bulk, at least for Tb and Ho for which the relaxations have been performed.

It is possible to rewrite equation (2) as a relation between the CF parameters and the charge
densities ρ4f and ρ, where ρ denotes the density of all the charges except for the charges of
the considered 4f shell. Then it is possible to subdivide the total CF parameter into a valence
contribution which is related to the part of the charge density ρ(r) which is located in the
muffin-tin sphere of the considered 4f shell, and a lattice contribution arising from the charge
density outside. In the classical point-charge model only the lattice contribution is taken into
account, whereby the corresponding charge density is modelled by an assembly of fictitious
point charges. It has been shown [8, 9, 15] that this point-charge model is totally inappropriate
for RE metals. For instance, in the series RECo5 the valence and lattice contributions to
A20 are [8] of about the same size but opposite in sign so that the total CF parameter A20 is
much smaller in size than the two contributions. It is, of course, interesting to analyse the
CF parameters of the elementary RE metals also in this line and to investigate the effect of
the symmetry breaking at the surface on the two contributions. As shown in figure 6 for the
case of Ho (similar results are obtained for all considered RE metals) the CF parameter A20 of
the bulk is strongly dominated by the negative lattice contribution (in contrast to the situation
found for the series RECo5, see above). At the surface the valence contribution becomes
strongly negative and dominates the lattice contribution which is now positive. The strong
modification of the valence contribution is totally inconsistent with a broken-bond model in
which it is assumed that the charge densities of the remaining atoms are conserved when
removing the upper part of the crystal upon creation of the surface. In that simple model
the valence contribution would not be modified at the surface. For the other CF parameters
the valence contribution is mostly larger than the lattice contribution both in the bulk and at
the surface and has a sign opposite to the sign of the lattice contribution. Upon interlayer
relaxation the valence contribution at the surface changes sometimes more strongly than the
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Table 2. The layer-dependent CF parameters 〈rl 〉4f Alm in [K] as obtained for a slab consisting of
16 basal planes in hcp stacking. The symbols SF, Li and B denote the outermost layer (‘surface’,
i = 1), the layer i and the innermost layer (‘bulk’, i = 8). The atoms are in the positions they
would have in the corresponding bulk material.

RE KFP SF L2 L3 L4 L5 L6 L7 B

Tb 〈r2〉4f A20 −409 −72 −230 −160 −177 −164 −161 −166
〈r4〉4f A40 −2.2 13.2 21.2 17.4 19.3 18.5 18.8 18.9
〈r4〉4f A43 −433 −258 20.6 12.4 12.7 4.0 0.7 2.56
〈r6〉4f A60 1.65 2.45 2.37 2.43 2.41 2.42 2.42 2.42
〈r6〉4f A63 17.0 1.4 −0.1 −0.1 0 0 0 0
〈r6〉4f A66 20.3 21.3 21.5 21.3 21.5 21.5 21.5 21.5

Dy 〈r2〉4f A20 −356 −81 −225 −161 −174 −156 −161 −166
〈r4〉4f A40 −2.8 14.0 18.1 16.7 17.6 17.1 17.3 17.4
〈r4〉4f A43 −385 −257 −7.3 5.8 7.8 2.4 1.4 2.1
〈r6〉4f A60 1.76 2.56 2.52 2.56 2.55 2.56 2.56 2.56
〈r6〉4f A63 18.0 1.4 0 −0.1 0 0 0 0
〈r6〉4f A66 20.8 22.1 22.3 22.0 22.2 22.2 22.2 22.2

Ho 〈r2〉4f A20 −297 −86 −187 −142 −155 −143 −147 −146
〈r4〉4f A40 −6.9 14.5 14.2 15.2 14.9 15.1 15.0 15.1
〈r4〉4f A43 −327 −230 −30 −8.6 −4.8 −1.1 −1.3 0.3
〈r6〉4f A60 1.63 2.32 2.32 2.33 2.32 2.33 2.33 2.33
〈r6〉4f A63 16.4 1.2 0 0.1 0 0 0 0
〈r6〉4f A66 18.6 20.1 20.3 19.9 20.1 20.1 20.0 20.1

Er 〈r2〉4f A20 −253 −105 −152 −133 −131 −126 −128 −127
〈r4〉4f A40 −11.5 14.1 10.9 13.5 12.3 13.1 12.8 12.9
〈r4〉4f A43 −264 −195 −33.5 −10.8 −9.0 −5.3 −1.6 −1.0
〈r6〉4f A60 1.58 2.22 2.24 2.24 2.24 2.24 2.24 2.24
〈r6〉4f A63 15.7 1.0 0 −0.1 0 0 0 0
〈r6〉4f A66 17.9 19.3 19.4 19.1 19.2 19.1 19.1 19.1

Tm 〈r2〉4f A20 −211 −122 −101 −103 −91 −92 −83 −85
〈r4〉4f A40 −15.2 12.5 7.9 11.5 9.7 10.2 10.2 10.2
〈r4〉4f A43 −190 −152 −29 −9.0 0.3 −3.6 2.3 −1.5
〈r6〉4f A60 1.49 2.07 2.10 2.08 2.08 2.07 2.07 2.07
〈r6〉4f A63 14.6 0.8 0 0 −0.1 0 0 0
〈r6〉4f A66 16.8 18.0 17.9 17.8 17.6 17.5 17.6 17.5

lattice contribution, and the strong modification of the valence contribution is responsible for
the change in sign of A40 upon relaxation (table 3).

The complete failure of the broken-bond model becomes apparent from the fact that the
additional CF parameters A43 and A63, which originate from the symmetry reduction at the
surface and which are neglected in a broken-bond model, are in fact very large for the layers
close to the surface. For example, for the surface layer of Ho we have 〈r4〉4f A40 = −6.9 K
but 〈r4〉4f A43 = −329 K, or 〈r6〉4f A60 = 1.63 K but 〈r6〉4f A63 = 16.4 K. This again clearly
demonstrates that the surface-induced modification of the charge densities can by no means be
neglected when calculating the CF parameters. This means that for a realistic description of
the spin structure at the surface by the three-step procedure discussed above, the broken-bond
model for the interaction parameters appearing in the phenomenological Hamiltonian does not
suffice, and one must use layer-dependent parameters.
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Table 3. The layer-dependent CF parameters 〈rl 〉4f Alm in [K] for the outermost layer of a 16-layer
slab from the calculation without (nr) and with (r) interlayer relaxation. The table gives the total
CF parameters and the respective valence and lattice contributions.

Terbium Holmium

SF nr r nr r

〈r2〉4f A20 −390 −388 −295 −291
〈r2〉4f Aval

20 −619 −552 −487 −422

〈r2〉4f AGitter
20 229 164 192 131

〈r4〉4f A40 −2.2 4.5 −6.8 2.9
〈r4〉4f Aval

40 14.8 24.7 −5.9 11.4

〈r4〉4f AGitter
40 −17.0 −20.2 −0.9 −8.5

〈r4〉4f A43 −435 −375 −328 −277
〈r4〉4f Aval

43 −1113 −996 −860 −858

〈r4〉4f AGitter
43 678 621 532 581

〈r6〉4f A60 1.73 1.87 1.61 1.73
〈r6〉4f Aval

60 3.59 3.91 3.20 3.38

〈r6〉4f AGitter
60 −1.86 −2.04 −1.47 −1.65

〈r6〉4f A63 17.1 20.3 16.2 19.2
〈r6〉4f Aval

63 48.3 49.8 40.1 42.0

〈r6〉4f AGitter
63 −31.2 −29.5 −23.9 −22.8

〈r6〉4f A66 21.5 21.3 18.3 18.2
〈r6〉4f Aval

66 51.4 52.8 39.2 41.0

〈r6〉4f AGitter
66 −29.9 −31.5 −20.9 −22.8

4. Conclusions

In the present paper we have shown by means of the ab initio density functional electron theory
that the modification of the charge density close to the surface of a rare-earth metal has a very
strong effect on the values of the CF parameters Alm . Those CF parameters which are nonzero
in the hexagonal bulk (A20, A40, A60, A66) are strongly modified for the three to four outermost
layers. There are additional nonzero CF parameters A43 and A63 due to the symmetry reduction
at the surface, which exhibit very large values close to the surface. Altogether, this means that
a broken-bond model (which considers just the effect of the absence of the neighbouring atoms
at the surface, but uses for the remaining magnetic interaction parameters the bulk values) fails
badly.

Originally we had in mind to explore the spin structure of Ho close to the surface by the
three-step approach discussed in the introduction, thereby adopting the broken-bond model
for the exchange interactions, but going beyond the broken-bond model for the CF parameters
by using our ab initio calculated layer-dependent values in the phenomenological Hamiltonian
for the statistical mechanics calculations. The objective was to investigate the influence of the
modifications of the CF parameters on the near-surface spin structure, and to compare the near-
surface spin structure with the bulk spin structure. As a first step, we calculated the ground-state
bulk spin structure by the first order thermodynamic perturbation theory [14, 22] (including the
effect of dipolar interactions), thereby using the exchange couplings and the CF parameters
(table 4) as given in [23]. Our results agreed well with those obtained in [23] by an exact
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Figure 4. The layer-dependent CF parameters in [K] for Tb from a calculation without (full squares)
and with (open squares) interlayer relaxations. The symbols SF, Li and B denote the outermost
layer, the layer i and the innermost layer of the 16-layer slab.

diagonalization of the corresponding mean-field Hamiltonian. We obtained a cone opening
angle of 71.6◦ and a bunching angle of 7◦. The sole action of the exchange couplings would
thereby lead to a helical ground-state spin structure confined to the basal plane (corresponding
to a cone opening angle of 90◦). The action of A66 is responsible for the bunching of the
moments in the basal plane [22], and the combined action of A20, A40, A60 and the dipolar
interactions is responsible [24] for the development of a cone opening angle different from 90◦.
When using our ab initio calculated CF parameters, however, we obtained the helical structure
in the basal plane with a bunching angle of 11.6◦ which is about twice the experimental value.
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Figure 5. The layer-dependent CF parameters in [K] for Ho from a calculation without (full
squares) and with (open squares) interlayer relaxations. The symbols SF, Li and B denote the
outermost layer, the layer i and the innermost layer of the 16-layer slab.

The reason for these artefacts is that our calculated values of 〈r6〉4f A60 and 〈r6〉4f A66 are a
factor of about four smaller than the values used in [23] (see table 4). As outlined in section 2
we indeed expect that the calculated CF parameters for l = 6 exhibit the largest uncertainty.
Because the calculated CF parameters did not yield the correct ground-state spin structure for
the bulk, we refrained from investigating the influence of the near-surface modifications of the
CF parameters on the spin structure. Of course we are nevertheless convinced that our ab initio
calculations yield at least semiquantitative results for the modifications of the CF parameters at
the surface, and the investigation of these modifications was the main objective of the present
paper.
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Figure 6. The total (open squares) layer-dependent CF parameters in [K] for Ho from the non-
relaxed calculation as well as the respective valence contributions (full triangles). The symbols
SF, Li and B denote the outermost layer, the layer i and the innermost layer of the 16-layer slab,
respectively.

Table 4. The values in [K] of the CF parameters 〈rl 〉4f Alm for bulk Ho as used in [23], in
comparison with our ab initio values.

〈r2〉4f A20 〈r4〉4f A40 〈r6〉4f A60 〈r6〉4f A66

Ref. [23] −125 0.0 8.52 84.3
Ab initio −153 14.9 2.39 20.5
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